
MA 3046 - Matrix Analysis
Laboratory Number 3

Practical Aspects of Numerical Linear Algebra

Practical Numerical Linear Algebra involves considerations different from, and gener-
ally well beyond, those which arise in introductory courses. The primary reason for these
differing considerations is the fact that practical, “real world” applications involve matrices
which tend to be very large, e.g. with 105 or more rows and columns. Such problems can
only realistically be solved on computers. Unfortunately, solving problems on computers
introduces a new set of concerns. Some of these simply relate to computational complex-
ity, i.e. the number of computations required to implement algorithms on large matrices.
As an example, we shall later show that the standard Gaussian elimination algorithm of
introductory linear algebra for solving the square system of equations

Ax = b

requires performing a number of multiplications, divisions, additions and subtractions (so-
called floating point operations or flops) roughly equal to 2

3n
3,where n is the number of rows

and columns in A. For a system where n ∼ 105, this means approximately 667 teraflops,
where one teraflop is a million megaflops, a rather daunting number.

However, flop counts are not the only issue in practical computation. As noted in
class, execution times for linear algebra algorithms on modern computing platforms depend
strongly not only on the flop count, but also on subtle interplays between numerous aspects
of both software and hardware architecture, and on interrelationships of these to the size of
the matrix. Software considerations include how efficiently the operating system manages
cache; whether the programming language used is interpreted or compiled; whether the
language uses row-oriented or column-oriented storage, and whether the language uses low-
level, machine language coded primitive vector operations such as the Basic Linear Algebra
System (BLAS) utilized by MATLAB. Hardware considerations focus on the speed of the
CPU chip relative to the number of computations that must be performed; the CPU
and system architecture in terms of either parallel or pipeline processing; the size and
architecture of the CPU’s arithmetic registers; the size of the CPU’s on-chip cache; the
size of the system RAM; and the effective speed of the system communication bus; and,
last but not least, the effect on accuracy of the floating point number system.

To reiterate, in numerical linear algebra, we commonly use the term computational
complexity as a synonym for a count of the number of flops required by a given calculation
or algorithm. Moreover, as shown in class, hand-counting the number of flops associated
with a given algorithm generally involves fairly straightforward, albeit sometimes laborious
analysis. Furthermore, we have already seen, in a earlier lab, a very rudimentary use
of MATLAB’s relatively coarse tic and toc timing functions to analyze the growth in
execution times related to the growth in computational complexity of the basic matrix
multiplication, i.e.

b ∗ a
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MIL = 1500000;
NITER = 5 ;
data = [];
a = randn(MIL,1); b = randn(MIL,1);
c = zeros(size(a));
%
for n=1:10,
tic
for j=1:NITER; c = a+b ; end
data = [ data; n, toc/NITER ];

end
%
for n= 1:10;
tic
for j=1:NITER; c = pi∗a ; end
data(n,3) = toc/NITER;

end
%
for n=1:10,
tic
for j=1:NITER; s = a0∗b ; end
data(n,4) = toc/NITER;

end
data

Figure 3.1 - Partial Listing of Program time prim.m

In this lab we start with another very simple timing code, program time prim.m,
which is shown in Figure 3.1. This code computes the average time required for five
iterations of each of the following operations

a+ b , πa , and aH b

where a and b have 1.5 million elements each. (Observe that basic computational
complexity analysis indicates that, for general matrices of size n, these computations
should require approximately n, n and 2n flops, respectively.) The results of this prove
interesting!

As discussed in class, several aspects of the MATLAB (software) language can be
expected to impact program execution in at least some situations. These aspects include
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clear
%
NMAX = 500;
a = rand(NMAX);
b = a ;
%
timefull = [ ]; % initialize the data array
for ntest = 1:5 % perform five iterations
tic % reset the ”stopwatch”
for i=1:NMAX % perform the calculations
for j=1:NMAX
2∗a(i,j);

end
end
timefull = [ timefull , toc ] % record the individual time

end
%
timerow = [ ];
for ntest = 1:5
tic
for i=1:NMAX
2∗a(i,:);

end
timerow = [ timerow , toc ]

end

Figure 3.2 - Partial Listing of Program timing1.m

the facts that MATLAB is an interpreted, column-oriented language, which also utilizes
machine-language, matrix-primitive routines (the BLAS). The program timing1.m, part
of which is shown in Figure 3.2, attempts to shed some light on how real these effects
may be. Observe that the first portion of the code determines and records in an array the
time required during each of five different iterations which use a “classic,” FORTRAN-like
double loop to calculate:

2A

for a 500 × 500 matrix A composed of “random” numbers. As before, we use the initial
call to tic in each iteration to effectively reset the “stopwatch” and then to toc at the end
to record the elapsed time required by the double loop for that iteration. Similar logic in
the second portion of the code repeats exactly the same calculation, but now on MATLAB
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indexed multiplication implemented on full row vectors (and therefore requiring only a
single loop). Comparing the different times required by these two different “algorithms”
should give us insights into the “cost” of explicit loops in MATLAB. Furthermore, it would
be extremely simple (and is actually done in the full timing1.m code) to extend this test
to both a single, column-oriented loop, in order to observe the differences, if any, between
row and column-oriented performance. Finally, if we extend the code to time the single
“pure,” native MATLAB command 2∗a, we should obtain some insight into the efficiency
of native MATLAB, and perhaps observe some of the effects of the BLAS. (Of course, while
running this code we should probably simultaneously observe the Windows Task Manager
Performance Window Tab to ensure that differences in results are not due to other factors,
e.g. memory-related problems.) Moreover, this simple example suggests any number of
other tests. For example, we could observe how, if at all, the results of timing1.m change
if, instead of simply multiplying A by two, we also stored the result in a new array, i.e. if
we were to compute

B = 2A

(The difference here is that now MATLAB would also have to allocate storage for both
the new and old matrices. This increased storage requirement could cause memory-related
problems to arise here that were not present, or not at least until larger sized matrices, in
the earlier case.)

We next turn to some of the practical numerical linear algebra considerations which
arise due to the effects of floating-point computer arithmetic. This additional focus should
seem natural and necessary, because, loosely speaking, while computational complexity
plus software and other hardware concerns address the primary factors in how long we
have to wait for an answer, considering floating-point arithmetic is essential to understand
whether the answer we get will in fact be worth the wait!

As discussed in class, virtually all actual computations are done in a floating-point
number system with some specified number of significant digits carried. (Specifically, PC-
based systems utilize the IEEE 754-1985 standard system.) As discussed in class, any real
number x and its floating-point representation are related by:

fl(x) = x(1 + δ) ,

where

|δ| ≤ eps = ²machine ≡ max
x 6=0

¯̄̄̄
x− fl(x)

x

¯̄̄̄
=

½
β1−n (chopping machine)

1
2β

1−n (rounding machine)

(Here β represents the number base for the machine, and n the number of significant digits
carried in the floating point representation.) The quantity eps is generally referred to as
machine precision, and on software for IEEE machines is often represented by a system
variable with that name. We generally expect that any computer computation can involve
errors on the order of magnitude of machine precision for that system (but hopefully not
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significantly larger), and numerical analysts devote a fair amount of effort to carefully
analyzing the effects of such errors.

In practice, we can usually calculate the precision of a given machine relatively straight-
forwardly, using any one of several essentially equivalent definitions of machine precision.
For example, machine precision can be defined alternatively as the largest relative error
that will be produced by a change of one in the least significant digit, or as the smallest
number δ such that:

fl ( 1. + δ ) 6= 1.

The MATLAB script fparith01.m (Figure 3.3), utilizes the latter of these alternative
definitions to determine, experimentally, MATLAB’s effective machine precision. (Note
that this program actually exits the loop at the point when a newly computed value of a
first produces

fl(1.+ a) = fl(1) ,

i.e. the way the logic of this program flows, we don’t know we’ve reached machine precision
until we pass it!)

a = 1.0 ;
%
while ( (1. + a) ∼= 1)
a = a/2. ;

end
%
deltamin = 2.0*a ;
%
sprintf(’ Machine Precision of MATLAB is %9.2e’, deltamin )

Figure 3.3 - Listing of Program fparith01.m

(There is one caution about using programs such as fparith01.m to determine machine
precision in other situations. Some machines have very “smart,” high-precision floating-
point coprocessors, and some software is able to “look ahead” in computations. One has
to test such systems and software fairly delicately, in order to avoid being mislead into
confusing the accuracy of the coprocessor with that of the floating-point architecture of
the underlying system.)

Unfortunately, MATLAB’s relatively high default machine precision seldom allows
us to observe meaningful effects from floating-point arithmetic in problems we can eas-
ily visualize. Fortunately, however, we can utilize the previously briefly-introduced and

45



data = [] ;
%
for NDIGITS = 2: 20 ;
%

a = 1.0 ;
%
while ( chop( (1.+a), NDIGITS ) ∼= chop( (1.+a/2.), NDIGITS) )

a = chop( a/2. , NDIGITS) ;
end

%
theoret = 0.5*10∧(1-NDIGITS) ;
data = [ data ; NDIGITS a theoret ] ;

end
%
% Note the use of (semi)logarithmic plots is usually preferable
% for displaying error behavior.
%
semilogy( data(:,1) , data(:,2) , ’*’, ...

data(:,1) , data(:,3) ) ;

Figure 3.4 - Listing of Program fparith02.m

slightly-misnamed MATLAB chop( ) function to simulate reasonably well the effects on
calculations of lower precisions. Specifically, as we saw before, the MATLAB statement

chop( x , n )

will round the floating-point number x to n significant digits. While, unfortunately for our
purposes, chop( ) only addresses the input argument x, its repeated use can reasonably
mimic lower-precision machines. For example, consider fparith02.m (Figure 3.4). This
script repeats the calculation of machine precision done in the fparith01.m, with rounding
of each intermediate step now used to simulate an NDIGITS significant digit machines,
and the simulated result compared to the theoretical one. (Note that fparith02.m does
slightly change the stopping test from fparith02.m. You should convince yourself that
stopping the loop now at the point where

fl( 1. + a ) = fl( 1. + a/2. ) .

should not theoretically change in the answer.)

Machine precision represents the theoretical “worst case” error we expect in the
floating-point representation of any number in a given system. But, as we know, that’s
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only the beginning of the numerical accuracy “story,” because subsequent floating-point
computations involving these numbers can introduce additional errors. Fortunately, for
the operations of multiplication, division and addition of two numbers with the same sign,
these additional errors are generally only on the order of magnitude of machine precision
and therefore not too serious. Unfortunately, the same is not necessarily true for subtrac-
tion (or addition of two numbers with different signs). Subtraction of two nearly equal
numbers will cause cancellation of the most significant digits, and result in an answer with
no, or almost no accurate digits. We commonly refer to this latter situation, when it occurs,
as catastrophic cancellation. Moreover, the same floating-point calculation, computed on
two different machines, or even using two different compilers on the same machine, may
result in different answers, although in computationally “well-designed” expressions, these
answers should not differ by more than a couple of orders of magnitude above machine
precision. (A similar phenomenon can occur when different but algebraically equivalent
formulas are used for the same quantity.)

We now turn to our primary area of interest - the effect(s) of floating-point arithmetic
on the computations if linear algebra. For example, consider Gaussian elimination. In its
most basic form, this algorithm provides an almost deceptively simple algorithm for solving
this problem by reducing the m× (n+ 1) augmented matrix to (augmented) echelon form,
i.e. by performing

[ A
... b ] → [ U

... b̃ ]

according to the basic pattern:

For each row, i = 1, 2, . . . , (m− 1), in sequence,
(i) Find the leading non-zero element on the current (pivot) row and on

every row below it
(ii) Interchange the current row with the row below, if any, whose leading

non-zero is furthest to the left of the leading non-zero on the current
row

(iii) Eliminate on every row below the (now) current (pivot) row using the
elementary row operation:

Rk ← Rk − lkjRi , k = (i+ 1), . . . ,m
where lkj = ãkj/ãij

(where the tilde indicates elements in the augmented matrix that may have been changed
from their original values in the matrix A.) This procedure was implemented in the
ge steps.m function introduced earlier in these labs.

Floating-point arithmetic introduces several potential problems for simple variants
of Gaussian elimination. These problems revolve around several fundamental aspects of
Gaussian elimination:

• First, the elementary row operation
Rk ← Rk − lkjRi
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involves (potentially inaccurate) subtractions. Therefore, there is at least some
risk that elimination may compute elements (including the pivots) that become
increasingly inaccurate.

• Secondly, Gaussian elimination makes critical decisions, e.g. row interchanges,
based upon whether or not element are exactly zero. However, floating-point
arithmetic virtually guarantees that a number that should be exactly zero when
computed in infinite precision arithmetic will not calculate to zero, but be only
“small.”

• Finally, because the Gaussian elimination multipliers (lkj) are given by ãkj/ãij ,
computations of

Rk ← Rk − lkjRi
based on a “small” pivot (ãij) result in a very large multiplier (lkj), which may
result in the effective loss of most or even all of the “information” in Rk.

In this laboratory, we shall investigate the effects of floating-point arithmetic on Gaussian
elimination with the help of two programs which use chop() to simulate the solution pro-
cess on a appropriate notional, low-precision machine. A partial listing of the first program,
ge steps chop.m, which implements Gaussian elimination with row interchanges only to
avoid zero pivots, in this simulated finite-precision machine, is shown in Figure 3.5. This
program requires only a minor modification of the program ge steps.m we introduced in
a earlier lab, and indicates how, in general, simulating finite-precision arithmetic need not
be unduly difficult. Note that since the intended use of this program is only to study the
effect of floating-point calculations on “small” matrices, we have not attempted to be the
least bit efficient, e.g. we happily use double looks rather than more primitive expressions.
A partial listing of the second program, bwd solve chop.m, which simulates the back-
substitution on the same notional, low-precision machine, once the augmented matrix has
been reduced to echelon form, is shown in Figure 3.6.

We would note, however, that both ge steps chop.m and bwd solve chop.m do
incorporate one not quite so minor previously unused feature of MATLAB, i.e. the use of
global variables. (Look at the first executable statement in the function.) Global variables
are similar to COMMON variables in FORTRAN, and offer an alternative way for programs
to pass data back and forth besides through the use of function arguments. Global variables
offer a very powerful, but also very dangerous feature, because any program, script, or
function can read or write to (i.e. change the value of) any variable defined as global in
that program. Therefore, they should generally be employed on a strict “need to know”
basis, and should be given very distinctive names so as to minimize the chances of their
being accidentally or inadvertently changed.

We would again emphasize that while m-files such as gepp steps chop.m provide
valuable windows into the inner workings of various algorithms, they are not designed to
replace “commercial grade” codes. So for the solution of real, practical systems of linear
equations, MATLAB’s backslash function remains our choice (although we still have some
things to learn about it).
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function [ uwork ] = ge steps( aaug )
%
global NDIGITS
if ( ∼ exist(’NDIGITS’) )+( isempty(’NDIGITS’) )
error(’NDIGITS either not defined or not made global’)

end
%
[m,n] = size(aaug) ;
uwork = chop( aaug , NDIGITS ) ;
%
working row = 1;
working col = 1;
%
while (working row < m)∗(working col < n)
i = working row ;
j = working col ;
[ maxcol , imax ] = max( abs( uwork(i:m, j))) ;

%
if ( maxcol == 0 ) ; %% check for free column %%%

working col = working col + 1 ;
%

else % So skip the rest if a free column was found
%

if ( uwork(i,j) == 0 ) ; %%%% check for zero pivot ;
imax = imax + i - 1 ;
uwork( [i,imax], : ) = uwork( [imax, i], : ) ;

end
%

for ii = i+1:m
lcoef = chop( uwork(ii,j)/uwork(i,j), NDIGITS ) ;
uwork(ii,j) = 0 ;
uwork(ii,j+1:n) = chop( uwork(ii,j+1:n) - ...

chop(lcoef∗uwork(i,j+1:n), NDIGITS), NDIGITS ) ;
end
working row = working row + 1;
working col = working col + 1;

end
end

Figure 3.5 - Partial Listing of Program ge steps chop.m
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function [ xvec ] = bwd solve chop( U , z )
%
global NDIGITS
%
[ rowsU , colsU ] = size(U) ;
uwork = chop( U , NDIGITS ) ;
zvec = chop( z , NDIGITS ) ;
xvec = zeros( rowsU, 1) ;
xvec(rowsU) = chop( zvec(rowsU)/uwork(rowsU,rowsU) ,...

NDIGITS ) ;
for i = (rowsU-1):-1:1
sum lhs = chop( uwork(i,(i+1):rowsU).∗...

xvec((i+1):rowsU)’, NDIGITS ) ;
adj num = chop( zvec(i)-chop( sum(sum lhs) , NDIGITS ) , ...

NDIGITS) ;
xvec(i) = chop( adj num/uwork(i,i) , NDIGITS) ;

end
%

Figure 3.6 - Partial Listing of Program bwd solve chop.m
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Name:

MA 3046 - Matrix Analysis
Laboratory Number 3

Practical Aspects of Numerical Linear Algebra

1. Start MATLAB and copy to your local directory the lab files:

time prim.m , timing1.m , fparith01.m , fparith02.m ,

gepp steps chop.m and bwd solve chop.m

(Note that if you are not working on an NPS system, you may also have to download
the file chop.m as well.) Also start the Windows Task Manager, select the Performance
window, and then minimize the manager. (Make sure a small green CPU busy indicator
appears in the lower right-hand portion of your screen!)

2. Determine the CPU speed and memory (RAM) in your computer:

CPU Speed —

Memory (RAM) —
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3. Using the MATLAB editor, open the file time prim.m and study it until you are
reasonably convinced what it does. Then run it, and record representative average times
for each of:

Vector Addition —

Scalar Multiplication —

Vector Inner Product —

Briefly describe why these times either agree with, or do not agree with what you expected
to see, based on the relative computational complexities.

If these results do not agree with what you expected to see, based on the relative com-
putational complexities, propose one or more possible, reasonable explanations for the
discrepancies.
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4. Using the MATLAB editor, change the size of the vectors to some other reasonable,
but still large size. Then rerun the program, recording the (new) representative average
times for each of

Vector Addition —

Scalar Multiplication —

Vector Inner Product —

What, if any thing has changed?

How do these new numbers either help to confirm or not confirm the tentative explanations
you proposed in part 3.
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5. Again using your web browser, open the script timing1.m, and examine it. Observe
that there are two “operations” which impact the time this script should take to execute:

(i) Retrieving each element of the matrix a into the CPU.

(ii) Multiplying each retrieved element by two.

Then run program timing1 and observe and record below average representative times
for each method. (Note how each of the data arrays is built element by element during
the loops. Also keep and eye on the CPU utilization meter from the Task Manager!)

Double Loop —

Singe Row-Oriented Loop —

Single Column-Oriented Loop —

MATLAB Primitive —

To what degree do these values either they confirm or appear to contradict earlier state-
ments in class and in this laboratory about how MATLAB “works.”

54



6. Rerecord your average representative times for each method and the 500× 500 matrix
below. Then, using MATLAB’s text editor, change the value of NMAX in script tim-
ing1.m to 1500, and then to 2500. In each case, then rerun the script and record the
corresponding representative average times below. (Again, in each case, keep an eye on
the CPU utilization!)

Size
Double
Loop

Single
Row −Orient.

Loop

Single
Column−Orient.

Loop
MATLAB
Primitive

500

1500

2500

Based on this additional data, to what degree, if any, do you need to modify your ear-
lier statement(s) about how these values either confirm or appear to contradict earlier
statements in class and in this laboratory about how MATLAB “works.”
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7. Open the full Task Monitor window. (You can just double-click on the CPU utilization
meter in the lower right screen.) Then switch to the MATLAB command window. (The
Task Monitor window will probably stay on top, but don’t worry about that!) In the
MATLAB command window, give the command(s)

clear ; a = rand(1500) ; inv(a)

Observe both the CPU and memory utilization graphs, as well as the disk access light
on the front of your PC. Basically, what do you see?

When MATLAB finished finding the inverse (i.e. when the “>>” prompt appears, give
the command(s)

clear ; a = rand(3000) ; inv(a)

Again observe both the CPU and memory utilization graphs, as well as the disk access
light on the front of your PC. Basically, what do you see now? (Unless you have a lot of
time, and patience, after a couple of minutes of watching you’ll probably have to use the
Task Manager to “kill” MATLAB here!)

How do these latest results, compared with the 1500× 1500 case agree or not agree with
earlier statements in class and in this laboratory about how hardware architecture can
effect execution speed?
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8. At this point you’ll probably need to restart MATLAB, or even reboot your system.
(Sorry!) Once you’ve done this, open a texteditor window and examine the MATLAB
script fparith01.m. What do you expect the result will be?

Then, give the MATLAB command

fparith01

(Or run the program directly from the editor window!) Compare this result with the
number(s) given in the question(s) above? Does this result confirm what you inferred
earlier about MATLAB’s machine precision and what was discussed in class?

9. Give the command help chop and study the response.

a. Run commands, i.e.

chop( 3.141592 , 3 ) Answer —

chop( 3.141592 , 4 ) Answer —

chop( 3.141592 , 5 ) Answer —

chop( 31.41592 , 5 ) Answer —

and finally

chop( 314.1592 , 5 ) Answer —

b. Are the results what you expected?
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10. Using another texteditor window, examine the MATLAB script fparith02.m (which
you copied to your disk earlier).

a. What is this script basically doing, and what quantities is it computing?

b. What is the effect of the

data = [ data ; NDIGITS a theoret ]

statement?

11. Run program fparith02. Is the output what you expected? If not, why?

12. Use the MATLAB help command to determine the use of the xlabel, ylabel and
title commands. Experiment with these to appropriately label this graph. When you’re
satisfied, print a hard copy of the final result.
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13. Give the MATLAB commands

clear

global NDIGITS

NDIGITS = 3

Then create the 4× 4 matrix (a)

a =


2.03 1.00 9.32 5.25
−2.01 −0.98 −10.5 −3.31
6.04 7.47 4.19 6.72
2.72 4.45 8.46 8.38


and the column vector:

b =


1
1
1
1


use the MATLAB backslash function to solve ax = b, and record the result

xtrue =
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14. Then run the MATLAB program ge steps chop.m on the augmented matrix [ a | b].
Look carefully for the appearance of small pivots, and the resulting effects. (Also see if
you can produce, offline, by hand, a couple of the intermediate results.)

Record the final echelon augmented matrix:

uwork =




Based on this result, use the bwd solve chop.m command, along with the proper sub-
matrices of uwork to compute the solution resulting from using Gaussian elimination,
without partial pivoting,in a three-digit, decimal, rounding machine:

x3−digit =





(Again, you should make sure you can basically reproduce these values by hand computa-
tions simulating a three-digit, rounding machine.)
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